Beamline

The NSUF offers researchers access to a broad range of facilities with beamlines, including accelerator facilities for radiation damage experiments, synchrotron radiation studies, neutron diffraction and imaging, and positron and neutron activation analysis.

Argonne National Laboratory

ANL’s Intermediate Voltage Electron Microscopy (IVEM)-Tandem Facility is unique in its ability to image the changes in atomic structure and defect formation during irradiation at high magnification. The IVEM-Tandem Facility offers researchers the ability to observe defect formation and evolution in real time during irradiation in well-controlled experimental conditions (constant specimen orientation and area, specimen temperature, ion type, ion energy, dose rate, dose, and applied strain). High-dose ion damage is produced in hours, rather than the years such damage would require in a nuclear reactor, supporting studies of material response to high doses of particle (ion and neutron) irradiation, and the in situ ion irradiation does not produce any radioactivity in samples.

Technical Point of Contact: Wei-Ying Chen ([email protected] or 630-252-5222)

Brookhaven National Laboratory

BNL’s National Synchotron Light Source II (NSLS-II) enables the study of material properties and functions with nanoscale resolution and exquisite sensitivity by providing world-leading capabilities for X-ray imaging and high-resolution energy analysis. The NSLS-II is a medium energy (3.0 GeV) electron storage ring designed to deliver photons with high average spectral brightness exceeding 1021 ph/s in the 2 – 10 keV energy range and a flux density exceeding 1015 ph/s in all spectral ranges. This performance requires the storage ring to support a very high-current electron beam (I = 500 mA) with a very small horizontal (down to 0.5 nm-rad) and vertical (8 pm-rad) emittance. The electron beam will be stable in its position (<10% of its size), angle (<10% of its divergence), dimensions (<10%), and intensity (±0.5% variation).

Technical Point of Contact: Simerjeet Gill ([email protected] or 631-344-5633)

Idaho National Laboratory

The Neutron Radiography Reactor at INL’s Materials and Fuels Complexis is a 300-kilowatt TRIGA research reactor that first went online at INL in 1977. NRAD is capable of performing small-scale material activation in one of two irradiation locations within the reactor core. Irradiation/activation experiments may be placed in either the dry irradiation tube, positioned at the edge of the reactor core, or in the wet tube located in the center of the reactor core.

Both dysprosium and cadmium-covered indium foils are used as neutron detector foils. These are irradiated in the neutron beam, then transferred to a film cassette and allowed to decay for three to four half-lives against ordinary X-ray film to form the image. The dysprosium foils, used for thermal neutron radiographs of low-enriched fuels and thin structural materials, produce excellent detail, but specimen thickness and fuel enrichment is limited. The indium foils are used for epithermal neutron radiographs of highly enriched fuels and thicker structural materials.

Technical Point of Contact: Aaron Craft ([email protected] or 208-533-7673)

Lawrence Livermore National Laboratory

LLNL’s Center for Accelerator Mass Spectrometry (CAMS) hosts a 10-MV FN tandem Van de Graaff accelerator, a NEC 1-MV tandem accelerator and a soon to be commissioned 250KV single stage AMS deck to perform up to 25,000 AMS measurement per year, as well as a a NEC 1.7-MV tandem accelerator for ion beam analysis and microscopy. The research and development made possible by accelerator mass spectrometry (AMS) and ion beam analytical techniques is diverse and includes geochronology (for archaeology, paleoclimatology, paleoseismology, and other disciplines); neotectonics; geomorphology; ground water hydrogeology; carbon-cycle dynamics; oceanic and atmospheric chemistry; bioavailability, and metabolism of chemicals, toxic compounds, and nutrients; forensic reconstruction of Hiroshima and Chernobyl dosimetry; detection of signatures of nuclear fuel reprocessing for nonproliferation purposes; material analysis and modification studies; as well as nuclear physics cross-section measurements and nuclear chemistry studies.

Technical Point of Contact: Scott Tumey ([email protected] or 925-423-9012)

Los Alamos National Laboratory

The Lujan Center at Los Alamos Neutron Science Center is one of five user facilities supported by the LANSCE accelerator. The Lujan Center instruments operate in time-of-flight mode, receiving neutrons from a tungsten spallation target. Four moderators provide epi-thermal, thermal and cold neutrons to specialized beamlines. The instrument suite available to NSUF participants includes the Spectrometer for Materials Research at Temperature and Stress (SMARTS), a third generation neutron diffractometer optimized for the study of engineering materials; High-Pressure-Preferred Orientation (HIPPO); Energy-resolved Neutron Imaging (ERNI), providing neutrons from 1 meV to 1 keV for nuclear physics measurements; Asterix, a neutron reflectrometer for studying the structure of interfaces and for cold neutron imaging; and the Neutron Powder Diffractometer (NPDF), a high-resolution total-scattering powder diffractometer.

Technical Point of Contact: Tarik Saleh ([email protected] or 505-665-1670)

North Carolina State University

At the NC State University PULSTAR Reactor laboratory, an intense positron source has been developed to supply a high rate positron beam to two different positron/positronium lifetime spectrometers. The positron source is comprised of a Tungsten moderator assembly surrounded by a Cadmium shroud located adjacent to the PULSTAR core in beamport #6. Positrons are created when gamma rays emanating from the reactor, and from neutron capture in the Cadmium shroud, interact via pair production with the Tungten nuclei. Positrons are then extracted from the moderator assembly and focused using electrostatic lenses.

Two positron spectrometer instrument stations are under development: Ps-PALS: Positronium Annihilation Lifetime Spectrometer, which will be dedicated to the measurement of lifetimes in materials where positronium formation is promoted, and e+ PALS: Positron Annihilation Lifetime Spectrometer, which will be dedicated to measuring positron lifetimes on the order observed in materials such as metals and semiconductors.

Technical Point of Contact: Colby Fleming ([email protected] or 919-515-3347)